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ABSTRACT
In this technical report, a semi-supervised solution for
the classification of audio signals under domain shift of
ICME 2024 Grand Challenge is described. In more de-
tail, a low-complexity attention-based convolutional neural
network is introduced for the identification of the scenes
that exploit the log-Mel spectrogram and the Wavegram
learning-based time-frequency representation. Experimen-
tal results on a portion of the challenge development dataset
show outstanding performance. Code, model, and pre-
trained weights are available at https://github.com/
michaelneri/ICME2024RM3Team.

Index Terms— Attention, Deep Learning, Wavegram,
Low-complexity, Semi-supervised

1. INTRODUCTION

Acoustic scene classification (ASC) is the task that aims
at identifying environments from only the sounds they pro-
duce [1]. In recent times, ASC has attracted considerable
interest due to many practical applications, such as systems
for detecting and classifying audio anomalies [2] and tag-
ging of events and music in urban scenarios [3, 4]. Several
studies have been conducted to identify audio patterns within
this field using deep neural networks (DNNs), which are em-
ployed to generate features for classification tasks, as done
in [2, 5–9].

However, domain shift is a critical issue in ASC where
models trained on one set of audio conditions underperform
when tested on different acoustic environments, e.g. trained
on advanced recording systems and tested on commercial-
off-the-shelf (COTS) devices [10] and viceversa. In [10] the
authors proposed an unsupervised domain adaptation method
that aligns the first- and second-order statistics of all the fre-
quency bands of target-domain acoustic scenes to the ones of
the source-domain training dataset. However, there is a lack
of methods that exploit large portions of unlabelled raw data
for improving supervised training of deep learning models.
A recent study introduced a multi-target domain adaptation

technique which focuses on reducing the domain gap by treat-
ing domain shift as a measurable distance [11].

To tackle the domain shift issue, we propose a deep
learning approach that introduces an attention module and
a learned time-frequency representation, namely Wavegram.
Then, a multi-iteration fine-tuning (FT) process is devised to
train the model on the source domain to improve its gener-
alization ability. Finally, unlabelled data is used in a semi-
supervised fashion to refine model’s predictions.

The remainder of the work is organized as follows: Sec-
tion 2 introduces the deep learning architecture and how it is
trained. Experimental results are shown in Section 3 whereas
the conclusions are drawn in Section 4.

2. PROPOSED METHOD

In this section, the proposed semi-supervised approach for
ASC is detailed. The overall architecture is shown in Fig. 1.

2.1. Feature extraction

Initially, a pre-processing stage is employed to extract the
complex short-time Fourier transform (STFT) STFT{x}
from the single-channel audio signal x ∈ R1×l, where l is
the number of samples that is equal to the duration in seconds
multiplied by the sampling frequency fs. This transform is
performed using a Hann window of length 32 ms with 50%
overlap. Next, a log-Mel spectrogram XMel ∈ Rt×f is ex-
tracted using a Mel filterbank HMel(·) as follows:

XMel = 20 log10 HMel(STFT{x}), (1)

where t and f denote the number of time and frequency bins,
respectively.

2.2. Wavegram

In [12] Wavegram is introduced as a new learned time-
frequency representation for audio tagging. In particular,
Wavegram is designed to capture time-frequency patterns that
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Fig. 1. Proposed approach for semi-supervised classification of ASC.
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Fig. 2. Example of acoustic features X and corresponding attention maps H = fATT(X) for a Construction site audio
recording. The first row depicts the log-Mel spectrogram and the Wavegram, respectively. The second row shows the attention
maps that are element-wise multiplied with the acoustic features to obtain X̃ .

are generally lost during the extraction of hand-crafted filter-
banks, e.g., Mel spectrograms [12]. Several methods have
been based on Wavegram by applying a 1D convolution that
acts as a learnable STFT [13–15]. Next, the features have
been further processed by layer normalization and 1D convo-
lutions with small kernel sizes [14, 15]. To reduce the com-
putational complexity, in this work, Wavegram consists only
of a separable 1D convolutional layer with f = 128 filters
with 1024 neurons each. To mimic the windows’ overlap
in the STFT computation, stride and padding of 512 sam-
ples are applied. The output of the Wavegram is denoted as
XWave ∈ Rt×f .

Finally, the log-Mel spectrogram and the output of Wave-
gram are concatenated along the channel dimension:

X = [XMel, XWave] ∈ Rt×f×2. (2)

2.3. Attention module

The attention module is devised to construct an attention map
H ∈ R+t×f×2 utilizing both the log-Mel spectrogram and
the Wavegram. Its objective is to highlight the most signif-
icant regions of features for the task of classification. This
module is represented as: fATT : Rt×f×2 → R+t×f×2. It
encompasses two separable convolutional blocks with 16 and
64 filters of size 3×3, sequentially. Following these blocks, a
convolutional layer of 1×1, i.e., a projection layer, is applied,
and a sigmoid activation function maps each pixel to a proba-
bility, thus producing a t×f×2 attention map. The enhanced
acoustic features X̃ ∈ Rt×f×2 result from the element-wise
product (⊗) of the time-frequency representations and the at-
tention map, defined as

X̃ = fATT(X)⊗X. (3)



An example of log-Mel spectrogram, Wavegram, and
their attention maps is depicted in Fig. 2.

2.4. Loss function

The classification layer we employ is ArcFace [16]

LAF(θ,y) = −yT es cos (θ+my)∑c
i=1 e

s cos (θi+mŷi)
, (4)

where the vector of angles θ = [θ1, θ2, . . . , θc] corre-
sponds to each class and is derived by computing θi =
arccos(wT

i h), reflecting the correlation between the features
classified as h ∈ Rh×1 and the ArcFace weights learned as
wi ∈ Rh×1 for the i-th class. The constants s ∈ R+ and
m ∈ R+ denote the scaling and margin coefficients for the
ArcFace loss, respectively.

2.5. Semi-supervised pipeline

Initially, the model is pre-trained on the TUT Mobile
dataset [17], similarly to the baseline provided by the orga-
nizers [18]. This stage involves adjusting the model’s weights
to recognize sound patterns and features of the urban scenario.

Then, multiple FT iterations are performed on the labelled
development dataset of the Grand Challenge. In this work, a
FT iteration consists in removing the last classification layer,
i.e., ArcFace [16], keeping untouched the model’s weights.
This iterative process helps the model adapt to specific tasks,
handle class imbalances, and enhance its ability to general-
ize to new data. It also offers insights for further model re-
finement, making the final model more suited to real-world
applications [19].

Next, the trained model is used to assign soft labels to the
unlabelled development dataset. Fig. 3 and Fig. 4 depict the
histograms of soft labels occurrences and confidence scores
during inference, respectively.

The latter is then utilized during the final FT with the
whole development dataset in the training loss

L(θ,y, α) = αLAF(θ,y), (5)

where α ∈ R+ is the confidence score of the prediction
θ from the single-channel recording x with one-hot ground
truth y. By doing so, the model during FT tends to disregard
errors on samples of the unlabelled dataset that have low con-
fidence scores. Finally, the trained model is used to perform
inference on the evaluation set.

3. EXPERIMENTAL RESULTS

3.1. Datasets

The 2023 Chinese Acoustic Scene (CAS) [18] dataset is an
extensive resource foundational to studies on environmen-
tal acoustic scenes, containing 10 scenes with a collective
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Fig. 3. Distribution of predicted labels in the unlabelled
dataset.
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Fig. 4. Distribution of confidence values in the unlabelled
dataset.

length of more than 130 hours. Each of the dataset’s 10-
second sound clips is accompanied by metadata detailing its
recording location and time. Derived from the CAS 2023, the
dataset for the ICME 2024 challenge includes development
and evaluation parts. The evaluation part comprises 1, 100
recordings chosen from 12 cities, incorporating 5 cities not
previously included to enrich the evaluation process for do-
main shift scenarios. Due to the nature of the challenge, we
randomly split the development dataset into training, valida-
tion, and testing sets using a percentage ratio of 80%-10%-
10%, respectively.



TAU Urban Acoustic Scenes 2020 Mobile development
dataset [17] is used to pre-train the proposed approach. The
dataset encompasses recordings from 12 European cities
across 10 distinct acoustic scenes, captured with 4 different
devices. Moreover, synthetic data was generated for 11 mo-
bile devices, drawing on the original recordings. Among the
12 cities, two are exclusively included in the evaluation set.
The overall length of the dataset is of 64 hours. Training,
validation, and testing have been carried out following the of-
ficial splits provided by the organizers of the challenge.

For both CAS 2023 [18] and TAU Urban Acoustic Scene
(UAS) 2020 [17], we follow the authors where accuracy is
employed to assess the performance of models

Acc =
TP

TP + FP
, (6)

where TP denotes the number of true positives, e.g., cor-
rect classifications, whereas FP represents the false positives,
e.g., misclassifications.

3.2. Implementation details

In this work, fs = 16 kHz to reduce the computational com-
plexity of the approach. The classifier at the end of the DNN
is MobileFaceNet [20]. The number of trainable parame-
ters is 874k, highlighting the low-complexity characteristic
of the approach. Regarding the training and FT procedure,
the model is trained for 100 epochs with batches of size 32. A
cosine annealing learning rate is employed with initial learn-
ing rate ηmax = 0.001 with a maximum number of steps
Tmax = 100. Pytorch-Lightning and Weights&Biases are uti-
lized for training and logging, respectively. ArcFace’s scale
and margin coefficients are set to s = 8 and m = 0.2, re-
spectively, following [16]. Number of FT iterations on the
labelled ICME 2024 development dataset is set to 3, since no
improvement on the validation loss has been observed. More
implementation details are available at https://github.
com/michaelneri/ICME2024RM3Team.

3.3. Results on TAU Urban Acoustic Scenes 2020 Mobile

Fig. 5 reports the confusion matrix of the proposed approach
on the TAU Urban Acoustic Scenes 2020 Mobile dataset.
Overall, the model achieves an average accuracy of 45%,
which is consistent with the performance of architectures that
are not ensembles of models [17], following the rules of the
ICME 2024 Grand Challenge.

3.4. Results on ICME 2024 development dataset

Table 3.4 shows the performance of the proposed approach
with several training setups. Training from scratch yields the
worst performance with an average accuracy of 63.79%. In-
stead, pretraining on the TAU Urban Acoustic Scenes 2020
improves the generalization ability of the model.
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Fig. 5. Confusion matrix of proposed approach on TAU Ur-
ban Acoustic Scenes 2020 development dataset.
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Fig. 6. Confusion matrix of proposed approach on ICME
2024 Grand Challenge test set dataset before exploiting the
unlabelled dataset.

Moreover, the multi-iteration FT process further enhances
the performance, achieving a remarkable 99.43% of accuracy
on the test set, as it can be inspected from the confusion ma-
trix in Fig. 6. With the addition of the unlabelled dataset in
the FT, the proposed approach achieves optimal classification
performance, showing a diagonal confusion matrix in Fig. 7.
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Fig. 7. Confusion matrix of proposed approach on ICME
2024 Grand Challenge test set dataset after exploiting the un-
labelled dataset.

Approach Acc (%)
from scratch 63.79%
1 FT iteration 97.70%
2 FT iterations 98.28%
3 FT iterations 99.43%

3 FT iterations + unlabelled dataset 100%

Table 1. Comparison of several training setup with respect to
test accuracy.

3.5. Results on ICME 2024 evaluation dataset

Blank subsection until the announcement of the results.

4. CONCLUSIONS

In this work, a semi-supervised learning approach for ASC
that addresses domain shift is proposed for the ICME 2024
Grand Challenge. Thanks to an attention-based convolutional
neural network (CNN), a learning-based time-frequency rep-
resentation, namely Wavegram, and an iterative FT process,
our model demonstrated optimal performance on the develop-
ment dataset of the challenge. Conclusion adding the results
on domain shift will be completed after the announcements.

5. REFERENCES

[1] D. Barchiesi, D. Giannoulis, D. Stowell, and M. D.
Plumbley, “Acoustic Scene Classification: Classify-
ing environments from the sounds they produce,” IEEE

Signal Processing Magazine, vol. 32, no. 3, pp. 16–34,
2015.

[2] K. Qiuqiang, C. Yin, I. Turab, W. Yuxuan, W. Wang,
and M. D. Plumbley, “PANNs: Large-Scale Pretrained
Audio Neural Networks for Audio Pattern Recognition,”
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 28, pp. 2880–2894, 2020.

[3] K. J. Piczak, “ESC: Dataset for Environmental Sound
Classification,” in Proceedings of the 23rd ACM inter-
national conference on Multimedia, 2015.

[4] J. Salamon, C. Jacoby, and J. P. Bello, “A Dataset and
Taxonomy for Urban Sound Research,” in Proceedings
of the 22nd ACM international conference on Multime-
dia, 2014.

[5] J. Salamon and J. P. Bello, “Deep Convolutional Neu-
ral Networks and Data Augmentation for Environmental
Sound Classification,” IEEE Signal Processing Letters,
vol. 24, no. 3, pp. 279–283, 2017.

[6] B. Bahmei, E. Birmingham, and S. Arzanpour, “CNN-
RNN and Data Augmentation Using Deep Convolu-
tional Generative Adversarial Network for Environmen-
tal Sound Classification,” IEEE Signal Processing Let-
ters, vol. 29, pp. 682–686, 2022.

[7] H. Park and C. D. Yoo, “CNN-Based Learnable Gam-
matone Filterbank and Equal-Loudness Normalization
for Environmental Sound Classification,” IEEE Signal
Processing Letters, vol. 27, pp. 411–415, 2020.

[8] H. Song, S. Deng, and J. Han, “Exploring Inter-Node
Relations in CNNs for Environmental Sound Classifi-
cation,” IEEE Signal Processing Letters, vol. 29, pp.
154–158, 2022.

[9] M. Neri, F. Battisti, A. Neri, and M. Carli, “Sound event
detection for human safety and security in noisy envi-
ronments,” IEEE Access, vol. 10, pp. 134230–134240,
2022.

[10] A. I. Mezza, E. A. P. Habets, M. Müller, and A. Sarti,
“Unsupervised Domain Adaptation for Acoustic Scene
Classification Using Band-Wise Statistics Matching,” in
EUSIPCO, 2021.

[11] D. Yang, H. Wang, and Y. Zou, “Unsupervised multi-
target domain adaptation for acoustic scene classifica-
tion,” arXiv preprint arXiv:2105.10340, 2021.

[12] Q. Kong, Y. Cao, T. Iqbal, Y. Wang, W. Wang, and
M. D. Plumbley, “PANNs: Large-Scale Pretrained Au-
dio Neural Networks for Audio Pattern Recognition,”
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 28, pp. 2880–2894, 2020.

[13] Y. Liu, J. Guan, Q. Zhu, and W. Wang, “Anomalous
Sound Detection Using Spectral-Temporal Information
Fusion,” in IEEE ICASSP, 2022.

[14] H. Chen, L. Ran, X. Sun, and C. Cai, “SW-WAVENET:
Learning Representation from Spectrogram and Wave-
gram Using Wavenet for Anomalous Sound Detection,”
in IEEE ICASSP, 2023.



[15] S. Choi and J Choi, “Noisy-ArcMix: Addi-
tive Noisy Angular Margin Loss Combined With
Mixup Anomalous Sound Detection,” arXiv preprint
arXiv:2310.06364, 2023.

[16] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “ArcFace:
Additive Angular Margin Loss for Deep Face Recogni-
tion,” in IEEE/CVF CVPR, 2019.

[17] A. Mesaros, T. Heittola, and T. Virtanen, “A multi-
device dataset for urban acoustic scene classification,”
in DCASE, 2018.

[18] J. Bai, M. Wang, H. Liu, H. Yin, Y. Jia, S. Huang,
Y. Du, D. Zhang, D. Shi, W. Gan, M. D. Plumb-
ley, S. Rahardja, B. Xiang, and J. Chen, “Descrip-
tion on IEEE ICME 2024 Grand Challenge: Semi-
supervised Acoustic Scene Classification under Domain
Shift,” arXiv:2402.02694, 2024.

[19] G. Hinton, O. Vinyals, and J. Dean, “Distilling
the knowledge in a neural network,” arXiv preprint
arXiv:1503.02531, 2015.

[20] S. Chen, Y. Liu, X. Gao, and Z. Han, “MobileFaceNets:
Efficient CNNs for accurate real-time face verification
on mobile devices,” in CCBR, 2018.


	 Introduction
	 Proposed method
	 Feature extraction
	 Wavegram
	 Attention module
	 Loss function
	 Semi-supervised pipeline

	 Experimental results
	 Datasets
	 Implementation details
	 Results on TAU Urban Acoustic Scenes 2020 Mobile
	 Results on ICME 2024 development dataset
	 Results on ICME 2024 evaluation dataset

	 Conclusions
	 References

